mandag den 14. august 2023

DIY 70 cm yagi 6 elements

Figure 1.

I needed a short 70 cm yagi for working the LEO satellites. In earlier years, I've had a 6-element yagi and I was satisfied with its performance. So I decided to build such an antenna.

Figure 2. 

The antenna measurements came from ON6MU. However, I made my own drawing (figure 2). All elements and the dipole were made according to the recommendations by ON6MU. Only the boom is a bit slimmer (15 x 15 mm instead of 20 x 20 mm). I had the tubes and the boom lying around, and assembly was easy. The measurements must be accurate down to the millimeter - and that was a challenge!


Figure 3.

The black element holders were found in the scrap-box. They were acquired some years ago from hfkits.com (link: Yagi element holder for 15x15 mm boom - HF kits). The balun is copied from innovantennas - they use the same concept. 4-5 tight loops of coax-cable prevents HF-currents running on the outside of the cable. I used 150 cm RG-400 teflon coax, and it was terminated with an N-connector. Figure 3 shows the balun before it was made water-proof.   

Figure 4.

Figure 4 shows how the dipole is mounted on the boom using 2 element holders. The dipole is isolated from the boom. The coax-cable center conductor is soldered to the left solder lug; and the coax braid to the right one.

I did not use stainless screws and mutters for assembly, so I painted all screws/mutters after fitting them to avoid corrosion. Where the coax-cable is connected to the dipole, the cable was secured against moisture. I used PlastiDip for this purpose. Otherwise, the braid may detoriate due to water ingress.

The antenna was mounted on a 1½" steel mast turned by a rotator (Yaesu G-600). From 7.5 meters above ground, the antenna heard two terrestical UHF beacons: OZ7IGY at 227 km (weak signal) and LA8UHF at 322 km (normal signal). I listened for the LEO satellite RS-44, and its beacon was heard at a distance of 4000 km. The antenna works to my satisfaction, and I'll use it from now on!

Antenna SWR is 1.3 between 432-438 MHz, and this figure is satisfactory.  

torsdag den 26. januar 2023

My first DXCC diploma

My first DXCC diploma arrived in the mail today. Shipping from USA to Denmark took 16 days. The mode is Mixed because CW and FT8 were used for my QSOs with 100 different entities (countries).


I have applied for DXCC before. It was around 1994. I sent QSL cards from 100 different countries to ARRL Headquarter in Connecticut. But my shipment newer arrived. It was called for in the postal system, but the envelope newer showed up - it was lost. Replacing 100 QSL cards is difficult, so I gave up DXCC for many years.  

I started with FT8 last year, and after some time, I discovered that DXCC was within reach. Another factor was Logbook of the World (LotW). This tool did not exist back in 1994, and LotW makes QSO confirmations fast, easy, and cheap. Many FT8 stations are using LotW for confirming their contacts. My DXCC diploma was confirmed by LotW for 94 entities, and QSL cards for 6 entities. The cards were checked by OZ1ACB who is the ARRL card checker in Denmark. 

Are there other diplomas in the pipeline? Yes, I am seeking QSOs for the QRP DXCC diploma, where all contacts must take place using a maximum of 5 W RF power on my side. Current status is 97 entities.   

73 from OZ1BXM Lars

Homepage: oz1bxm.dk

søndag den 8. januar 2023

First QSO via Greencube satellite

Greencube is an exciting satellite. The orbit is MEO (Medium Earth Orbit), and the average distance to Earth is 6,800 km. Greencube carries seeds for plants to grow under microgravity conditions.The results of this project will allow production of vegetables in space to support future human space missions. Future astronauts will have access to fresh and nutritious food along their journey!  

Greencube

Greencube in the lab. Photo: Italian Space Agency.

Greencube is a tiny satellite measuring 10 cm x 10 cm x 30 cm. It was launched by ESA from French Guiana on 13. July 2022. NORAD ID is 53106. AMSAT has designated the satellite IO-117. The satellite carries a digipeater for ham radio operating at 435 MHz. 

IO-117 footprint

Greencube footprint (www.n2yo.com)

I've decided to operate via Greencube. The footprint is huge compared to the current LEO satellites. I have never tried operating a digipeater before. The distance to the satellite is between 6,800 km and 10,000 km. There are some challenges here!

Ground station

OZ1BXM ground station for Greencube.

My ground station for Greencube is a Yaesu FT-847 VHF/UHF transceiver. Greencube software runs on my Windows 10 computer. My antenna is a 9-element X-Quad (vertical polarization) controlled by 2 rotators, one for azimuth and one for elevation.

The challenge was installing the software. There were in total 6 different programs to install and configure. It took me several long days to complete.

I had my first QSO via IO-117 on January 6th with S57NML in Slovenia. It was fun and challenging. Later followed a QSO with W5CBF in Louisiana, USA. There is plenty of DX to chase on this satellite!

Link: ZR6TG Adventures with Greencube Satellite

Link: Tracking Greencube: https://www.n2yo.com/?s=53106

73 from OZ1BXM Lars, oz1bxm.dk